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SUMMARY

Simulations of a cumulonimbus cloud observed in the Cirrus Regional Study of Tropical Anvils and
Cirrus Layers–Florida Area Cirrus Experiment (CRYSTAL-FACE) with an advanced version of the Explicit
Microphysics Model (EMM) are presented. The EMM has size-resolved aerosols and predicts the time evolution
of sizes, bulk densities and axial ratios of ice particles. Observations by multiple aircraft in the troposphere provide
inputs to the model, including observations of the ice nuclei and of the entire size distribution of condensation
nuclei.

Homogeneous droplet freezing is found to be the source of almost all of the ice crystals in the anvil updraught
of this particular model cloud. Most of the simulated droplets that freeze to form anvil crystals appear to be
nucleated by activation of aerosols far above cloud base in the interior of the cloud (‘secondary’ or ‘in-cloud’
droplet nucleation). This is partly because primary droplets formed at cloud base are invariably depleted by
accretion before they can reach the anvil base in the updraught, which promotes an increase with height of the
average supersaturation in the updraught aloft. More than half of these aerosols, activated far above cloud base,
are entrained into the updraught of this model cloud from the lateral environment above about 5 km above mean
sea level. This confirms the importance of remote sources of atmospheric aerosol for anvil glaciation.

Other nucleation processes impinge indirectly upon the anvil glaciation by modifying the concentration of
supercooled droplets in the upper levels of the mixed-phase region. For instance, the warm-rain process produces a
massive indirect impact on the anvil crystal concentration, because it determines the mass of precipitation forming
in the updraught. It competes with homogeneous freezing as a sink for cloud droplets. The effects from turbulent
enhancement of the warm-rain process and from other nucleation processes on the anvil ice properties are assessed.

KEYWORDS: Aerosol particles Homogeneous aerosol freezing Secondary droplet nucleation

1. INTRODUCTION

Cirrus cloud forms at temperatures colder than about −30 ◦C. It covers about
35% of the globe and is fundamental to the radiation budget of the climate system
(Ramanathan et al. 1983). Much tropical cirrus originates from the anvils of cumulonim-
bus (Cb) storms. An anvil is formed by the upwelling of condensate in the updraught of
the storm. The rate of generation of crystals in Cb updraughts may affect the eventual
ice concentration in this cirrus.

Cloud droplets are nucleated by activation of cloud condensation nuclei (CCN)
aerosols either at cloud base (‘primary droplet nucleation’) or later in the interior of
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the cloud (‘secondary droplet nucleation’). Spontaneous (‘homogeneous’) freezing of
activated drops occurs at temperatures colder than a size-dependent threshold, which is
usually somewhere near −36 ◦C. Supercooled cloud-droplets and raindrops may also
freeze by the activation of ice nuclei (IN; ‘heterogeneous ice nucleation’) at subzero
temperatures. In the anvil, aerosols can persist unactivated in the supercooled state
until they freeze spontaneously (‘homogeneous aerosol freezing’) at high supersatu-
rations with respect to ice approaching 50% or more (Jensen et al. 1998; Koop et al.
2000).

Ovtchinnikov et al. (2000) found that the mixed-phase microphysics of a moderate
cumulus cloud with no anvil was dominated by the Hallett–Mossop (H-M) process
(Hallett and Mossop 1974) of ice particle multiplication. The H-M process involves
the production of splinters during the riming of large cloud droplets of >24 microns
diameter onto ice at −3 to −8 ◦C. Such mixed-phase microphysical processes, as well
as warm processes, might be expected to modify the updraught’s supply of condensate,
aerosols and vapour to the anvil.

Turbulence in clouds has impacts on the formation of cloud droplets, on conden-
sation growth, and on subsequent collisions and coalescence of droplets (Jonas 1996;
Smith and Jonas 1996; Khain et al. 2000). The evolution of the cloud-droplet distribution
is influenced by turbulence due to: (i) fluctuations in the supersaturation field, affecting
condensation; and (ii) increased average rates of collisions, arising from fluctuations
both in the droplet concentration and the relative velocity between droplets of different
sizes. Turbulence affects the cloud dynamics by mixing air from the environment into
the cloud. Such entrainment reduces the cloud buoyancy and dilutes condensate.

The general importance of homogeneous freezing in ice clouds is evident from the
fact that liquid water is only very rarely observed at temperatures colder than about
−38 ◦C (DeMott et al. 1997). Heymsfield and Sabin (1989) highlighted the potential
for competition between heterogeneous and homogeneous nucleation of crystals in
cirrus (see also DeMott et al. 1997; Spice et al. 1999), with homogeneous freezing
favoured at stronger updraught speeds. The predominance of homogeneous freezing
in observed wave-clouds with updraught speeds exceeding 1 m s−1 was inferred by
Heymsfield and Miloshevich (1993, 1995). Updraughts extending into Cb anvils are
much faster than this, which might seem to implicate homogeneous freezing as their
key mechanism for glaciation. In observational studies of Cb anvils, two types of
homogeneous freezing have been proposed: first, Knollenberg et al. (1993) speculated
that homogeneous aerosol freezing might explain high concentrations, >10 cm−3,
of crystals observed in tropical Cb clouds; second, Rosenfeld and Woodley (2000)
invoked massive homogeneous freezing of activated cloud-droplets to explain aircraft
observations of some Texan convective storms.

In this paper we describe explicit microphysical calculations to evaluate the relative
importance of these various mechanisms for the formation of anvil ice particles in a
deep convective updraught. We also assess the modulation of such mechanisms by the
warm- and mixed-phase microphysical processes. Relevant turbulence parameters are
prescribed from aircraft observations and three-dimensional (3-D) model results. An
advanced version of the Explicit Microphysics Model (EMM) developed by Phillips
(2001) and Phillips et al. (2001, 2002, 2003) is applied to simulate a Cb case observed
in the Cirrus Regional Study of Tropical Anvils and cirrus Layers—Florida Area Cirrus
Experiment (CRYSTAL-FACE, Jensen et al. 2004). This is the first project, to our
knowledge, to combine simultaneous measurements of aerosol particles in the lower
and upper troposphere with in situ aircraft observations of Cb clouds and their anvil
cirrus.
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2. THE MODEL

(a) Overview
The EMM was originally developed by Phillips (2001) as an extension to the 1-D

Multi-Thermal Model (MTM) of cumulus glaciation by Blyth and Latham (1997).
Fully interactive components for vapour, cloud water, ice and rain were added to the
model by Phillips. Precipitation ‘size-bins’ are advected in 2-D in the vertical plane on
which the updraught and downdraught are located (see subsection 2(b) for a description
of dynamical regions), while cloud-water size-bins and vapour are advected in 1-D.
The cloud dynamics are prescribed.

Ice particles are grouped into several basic species in the model, according to their
mode of formation:

(i) Homogeneously frozen cloud droplets and aerosol particles;
(ii) Primary ice, nucleated by condensation/deposition freezing (Meyers et al. 1992)

between −5 and −30 ◦C (see subsection 3(a));
(iii) Homogeneously frozen precipitation particles;
(iv) H-M splinters emitted from particles in species (ii) and (iii);
(v) Frozen raindrops formed heterogeneously and from collisions with ice in species

(ii)–(iv); and finally,
(vi) Further generations of H-M splinters and raindrops frozen in collisions with H-M

splinters.

For primary nucleation of crystals, contact nucleation is omitted since ther-
mophoretic effects tend effectively to inhibit it in the convective updraught (Phillips
et al. 2001, 2002; see also Ovtchinnikov et al. 2000). The observed dependence of the
H-M process (Hallett and Mossop 1974) on the riming rate, temperature and droplet
size are all represented: one splinter is generated for every 200 droplets >24 μm diam-
eter that are rimed at −5 ◦C. This multiplication rate is applied for all sizes of riming
ice particle (see Saunders and Hosseini 2000). Homogeneous freezing of droplets of
a given size occurs when the temperature falls below their size-dependent threshold
(see Pruppacher and Klett 1997). The approximation is made that this freezing occurs
instantaneously; the justification for this is that the time-scale for homogeneous freezing
of a single cloud-droplet (∼10 μm) is probably a few seconds (assuming a volumetric
nucleation rate of 108 cm−3s−1 and a cooling rate of about 10 degC minute−1), which is
substantially less than the time taken (about 20 s) for model updraught parcels to ascend
through the layer in which 99% of their cloud-water mass is homogeneously frozen.
For each basic species, the evolution of its size distribution with time is predicted in all
layers in the cloud.

In the EMM, a particle-growth scheme predicts the continuous evolution of the
dimensions, bulk density and axial ratio of ice particles in each size-bin (see Phillips
et al. 2001, 2002, 2003). ‘Categorization assumptions’ that prescribe the shape and bulk
density of ice particles in artificial classes are not in general utilized by the EMM, in
contrast with many cloud models. The continuum of values of shape and bulk density
across the size distribution that is typically seen in a given volume of cloud in nature, is
represented in the EMM. Every size-bin has a ‘memory’ of the prior history of growth of
its particles; particle properties are not simply diagnosed from the current size or mass
of the particle. Ice particles are represented as either cylindrical or spheroidal shapes
depending on their amount of accreted rime, and have a continuously evolving axial
ratio. In contrast with many microphysical models, the EMM utilizes a variable size grid
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for hydrometeors: the size of each size-bin varies continuously with time, following the
motion and growth of its particles.

(b) Prescribed cloud dynamics
A 1-D dynamical framework for the cloud is prescribed in the manner described

by Phillips et al. (2001, 2002, 2003). Values of dynamical parameters are adjusted to
match observed values from the CRYSTAL-FACE Cb case of 18 July 2002, simulated
here. There is a sequence of thermals in the updraught ascending at about half the
local value of the peak updraught speed (see Levine 1959), which increases linearly
with height between the cloud base and 11 km above mean sea level (AMSL). These
thermals lift the cloud top in stages to its maximum altitude, as in the original MTM.
A downdraught 1 km deep is included adjacent to each thermal. Particles are swept into
the downdraught from the tops of the thermals. Ice particles in the downdraught are
evaporated at a rate that is such as to maintain exact ice saturation. A model component
to represent the surrounding cloudy region (SCR), introduced by Phillips et al. (2003) in
stratiform simulations, is retained in the current version. Particles surviving descent in
the downdraught are partially recirculated back into the updraught, with the remainder
being deposited in the SCR. These 1-D channels, for the updraught and SCR, are
discretized as stacks of ascending horizontal layers that are each about 50 m deep. The
microphysical interactions are evaluated separately in each layer, and particles may fall
from one layer to the next. The slope of the channels is determined by the horizontal
advection of thermals by the environmental vertical shear.

The entraining mass flux of environmental air entering the updraught per unit
of altitude (z), Ez (kg s−1m−1), is related to the updraught mass flux, F(z), by:
Ez = f ∗

E (z)E�, with � = F(z)/H(t). Here H(t) is the instantaneous depth of the
cloud at time t . The skew factor is defined by f ∗

E (z) = fE(z)(H(t) − z)/H(t). In this
case fE(z) is unity except in the upper third of each thermal where it is 0.5, and in the
central third of the thermal where it is interpolated from 0.5 to unity. This parametrizes
the adiabatic cores seen in aircraft observations by Heymsfield et al. (1978). Finally,
E is an entrainment parameter that is adjusted to obtain a match of the passive tracer
profile between the EMM and a 3-D model at all levels (see subsection 3(b)). Details of
previous versions of the EMM are provided by Phillips et al. (2001, 2002, 2003).

(c) New features of model
There are some novel features of the EMM used here. First, there is now a solution

of the stochastic collection equation (SCE) for coalescence, aggregation and rain–
ice collisions. This replaces the autoconversion formulae in previous model versions.
The scheme proposed by Bott (1998) has been adapted for the variable size grid
of the EMM. In the case of aggregation, solution of the SCE involves transferral
of ice crystal properties (bulk density, shape, meltwater mass, trajectory position)
between size-bins whenever ice mass is transferred. For aggregation, the bulk density
of aggregates at the instant of their formation is derived from empirical relations for
unrimed snow crystals, and their initial axial ratio is assigned an empirical value of 0.25
(see Pruppacher and Klett 1997). Of course, during subsequent growth, the bulk density
and shape of aggregates are free to evolve as predicted by the particle-growth scheme
(see subsection 2(a)). Sticking efficiencies of Mitchell (1988) are applied, as in previous
model versions.

The turbulent enhancement of the collision kernel occurs by the turbulent/inertia
mechanism proposed and implemented by Khain and Pinsky (1995), Pinsky and Khain
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(1998, 2002), Pinsky et al. (2000) and Khain et al. (2004). By this mechanism, there is a
modification of the relative velocities of drops of different masses owing to their inertia.
Values of the turbulent enhancement factor for coalescence are identical to those applied
in the Hebrew University Cloud Model (HUCM, Khain et al. 2004). This enhancement
factor in a given collision is a 2-D function of the masses of collecting and collector
droplets. The turbulent dissipation rate assumed for their derivation is similar to the
value observed by aircraft in the deep-cumulus case being simulated for this paper
(see subsection 3(a)). Similarly, for riming, a 2-D set of mass-dependent turbulent
enhancement factors is applied, again using HUCM data. The same set of turbulent
enhancement factors is applied for ‘collisional’ raindrop-freezing, as for riming. Values
of the (non-turbulent) drop–drop collision efficiency are those utilized by Khain and
Sednev (1996) and Khain et al. (2004), being based on data derived theoretically and
numerically by Hall (1980). Raindrop break-up is also included with Bleck’s (1970)
numerical method.

Explicit representation of the entire size distribution of unactivated condensation
nuclei (CN) aerosols in 33 fixed doubling bins, on a grid of the dry mass of the solute,
has been introduced (giant and ultra-giant aerosols are neglected—see section 6). This
enhances the representation of droplet nucleation. For the j th size-bin of unactivated
CN, the rate of change of the particle-number mixing ratio (number of particles per kg
of air) is given by an equation similar to that for vapour and cloud water:

DNj/Dt = αE(Nenv,j (z) − Nj) + Sj .

Here, αE is the fractional entrainment coefficient for the updraught and is determined
by Ez. Also, Nenv,j (z) is the observed number mixing ratio of CN in the environment
in the j th size-bin (see subsection 3(a)), while Sj is a source/sink term that accounts
for losses of aerosol due to droplet nucleation. A droplet-nucleation scheme similar to
that applied by Khain et al. (2004) has been included. For a given supersaturation, the
critical CN radius is computed using Kohler theory (see Rogers and Yau 1991) assuming
that the aerosols all have the same chemical composition. CN with radii exceeding this
critical value are activated as cloud droplets. For an assumed chemical composition
of ammonium sulphate (see subsection 3(a)), a Van’t Hoff factor of three, an average
molecular weight of 132.14 and a dry density of 1.77 g cm−3 are utilized.

Homogeneously frozen cloud droplets are now advected in 1-D in the same manner
as cloud water, CN and vapour, to improve the dynamical coupling with the vapour field.
Homogeneously frozen droplets are grown as cylindrical particles, with an evolving bulk
density and shape predicted by the particle-growth scheme. Homogeneous aerosol freez-
ing as predicted by Koop et al. (2000) is now included. Whenever the supersaturation
with respect to ice exceeds the temperature- and size-dependent critical value corre-
sponding to a given aerosol size-bin, all the aerosols in that size-bin are instantaneously
frozen. This is an approximation to reality, since it takes a finite time for real drops to
freeze. It is assumed that aerosols will always freeze homogeneously before they can
activate as liquid droplets, at all temperatures colder than about −40 ◦C (see Fig. 3 of
Koop et al. 2000; Knollenberg et al. 1993). Consequently, secondary droplet nucleation
is only applied at temperatures warmer than about −40 ◦C.

Collision efficiencies for the freezing of supercooled raindrops in collisions with
ice crystals have been incorporated, utilizing laboratory data from Lew and Pruppacher
(1983) for ice columns and from Lew et al. (1985) for planar crystals. The observed
dependence of these collision efficiencies on ice-particle size, bulk density and axial
ratio are included (by converting the published plots to multi-dimensional look-up
tables). For the smaller supercooled raindrops (<0.2 and <0.6 mm for collisions with
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columnar and planar particles, respectively) no empirical data are available: their drop–
ice collision efficiency is approximated by the drop–drop value for a hypothetical drop
of the same mass as the colliding ice particle, as in the HUCM. Finally, accretion of
supercooled rain or drizzle by very large ice particles has been included. The collision
efficiency for the collection of supercooled rain and droplets by larger ice particles is
now dependent on the bulk density of the ice and on the masses of each colliding pair of
particles, with HUCM data for the riming of graupel and hail being applied. The density
of ice from accreted rain is that of pure ice.

As with previous versions of the EMM, the terminal velocity of ice is determined
by relations between its Reynolds and Best numbers, and between its Best number,
particle mass and size, as presented by Pruppacher and Klett (1997) for cylindrical and
spheroidal shapes of particle, respectively. For graupel, a comprehensive set of relations
between the Best and Reynolds numbers from Rasmussen and Heymsfield (1987) is
applied.

The time step for the prescribed evolution of cloud dynamics, and for the solution of
the stochastic collection equation for coagulation and collisional nucleation processes,
is 2 s. The tracing of trajectories, evaluation of riming and vapour growth of particles,
and solution of empirical equations for particle shape/density, are all performed on a
time step of 0.1 s.

3. OBSERVED STORM CONDITIONS AND MODEL CONSTRAINTS

(a) Case synopsis and model meteorological inputs
The case simulated by the EMM control simulation is that of 18 July 2002 from the

CRYSTAL-FACE campaign. The campaign included Twin Otter and Citation aircraft,
which both flew over the peninsula on this day. The Twin Otter flew mostly in the
boundary layer in the storm’s environment and carried a suite of aerosol instrumentation
including a Differential Mobility Analyser (DMA). The Citation spent more time at
mid-levels and performed traverses of the updraughts and anvil cirrus of storm cores.
The Citation was equipped with standard meteorological instrumentation and cloud
microphysical sensors including a Forward Scattering Spectrometer Probe (FSSP), a
Particle Measuring System two-dimensional cloud and precipitation probe, or 2-DC
probe, for counting hydrometeors, the King probe for measuring liquid cloud-water,
the Counterflow Virtual Impactor and the Continuous Flow Diffusion Chamber (CFDC)
for measuring aerosol activation. Finally, the NASA WB-57 aircraft, also carrying
several aerosol and cloud probes, observed anvil outflows and the upper-tropospheric
environment during CRYSTAL-FACE.

Strong Cb storms were popping up over the southern tip and south-east coastal
region of the Florida peninsula on the afternoon of 18 July, in an environment of
weak low-level winds and strong upper-level north-easterly shear. The temperature and
humidity structure of the environment was observed by sondes released from ground
sites on the peninsula. The convective available potential energy over the South Florida
region was over 2000 J kg−1, among the highest values observed during the experiment,
while the highest cloud tops reached about 15 km which was slightly above average
(Sherwood et al. 2004). The cloud base sampled by the aircraft was at 0.8 km AMSL
(22 ◦C), and the freezing level was at 5.9 km AMSL. The boundary-layer aerosol content
observed by the Twin Otter was more nearly continental than maritime. A CCN/aerosol
closure study for CRYSTAL-FACE shows that if ammonium sulphate is assumed to be
the aerosol chemical composition then there is an accurate treatment of CCN activation
on this day (VanReken et al. 2003).
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As described previously, the EMM requires several meteorological inputs, includ-
ing the cloud-base and cloud-top altitudes given above. A top height of 14 km was
used, since this was a more typical value, although some clouds reached higher levels.
Updraught velocity was prescribed based on the penetration by the Citation after 1932
UTC, where a peak updraught speed of almost 24 m s−1 was measured at about 11 km
AMSL (−34 ◦C) in the mixed-phase region. The turbulent dissipation rate from the
Citation data had a mean value of about 700 cm2s−3 at about 11 km AMSL. The peak
updraught speed in the model was set at 25 m s−1 at 11 km AMSL and 3 m s−1 at cloud
base. The vertical wind shear between 1 and 11 km AMSL was obtained from sonde
data, and was about 1.5 m s−1km−1, which was the input for the model.

A size-resolved vertical profile of aerosol-number mixing ratio (Nenv,j (z)) for the
model was generated by combining the profiles of size distribution from the WB-57 and
Twin Otter aircraft in the upper and lower troposphere, respectively. The gap between
the two ranges of altitude from these aircraft was filled with an interpolation that
matched the total aerosol concentration in all size-bins to that observed with the FSSP
probe on the Citation aircraft at each level. The Twin Otter particle-size distribution was
observed with the DMA (<950 nm) and Passive Cavity aerosol Spectrometer Probe
(0.1–3 microns), being normalized by the total number concentration of aerosols from
the Condensation Particle Counter. The aerosol size distribution from the WB-57 was
measured in the nucleation mode with the Nucleation-Mode Aerosol Size Spectrometer
(data from 19 July were used because there was no WB-57 flight on 18 July).

The CFDC instrument on the Citation measured an environmental IN concentra-
tion that was up to about 1.5 times the value obtained from the Meyers et al. (1992)
formula for condensation-deposition freezing. Consequently, in the model the environ-
mental concentration of IN activated at each level was determined by multiplying the
temperature-dependent value from Meyers et al. by this observed factor. The formula
by Meyers et al. was arbitrarily extrapolated to −30 ◦C for the lowest temperature
of IN activation; a sensitivity test (see subsection 4(f)) did not reveal any appreciable
sensitivity to the choice of its value.

(b) Determination of model physical parameters
Aircraft observations of convective updraughts on 18 July during CRYSTAL-FACE

were analysed to estimate the contribution to the horizontally averaged (indicated by 〈 〉)
rate of coagulation from the correlation between spatial 3-D deviations, 〈N ′(m)N ′(q)〉,
of the particle concentration (see the third and fourth correlation terms of Eq. (2) in
Stevens et al. (1998)) at spatial scales >0.1 km. Here, N is the particle concentration
while m and q are masses of colliding particles. This correlation was observed to be at
least an order of magnitude less than the product of the updraught-average concentra-
tions, 〈N(m)〉〈N(q)〉. A ‘large-scale eddy-enhancement factor’ may be defined here as
the average over values of m and q at a given level of:

� = 1 + 〈N ′(m)N ′(q)〉/(〈N(m)〉〈N(q)〉).
This eddy-enhancement factor is applied to the collision kernels for coagulation

processes in the 1-D model, in order to account for the 3-D inhomogeneity of the particle
concentration in the real cloud on spatial scales >0.1 km. It has observed values in the
range of about 1.01 to 1.1 for Citation traverses of Cb updraughts at levels in the mixed-
phase region on 18 July 2002 (a value of 1.1 is applied in the model). Its proximity to
unity suggests that, for the particular cloud being simulated, collision-coalescence may
be adequately predicted in a 1-D framework if the average cloud-water properties are
accurate.
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A value of 2.7 for the entrainment parameter, E, was selected so as to match,
at all levels in the updraught, the mixing ratio of a passive tracer in the EMM with
that predicted in the 3-D cloud model of Fridlind et al. (2004). Aircraft observations
analysed by Fridlind et al. indicate that the secondary droplet nucleation aloft occurs
primarily at the edges of the updraught in regions of entrainment for Cb cells on this
particular day of CRYSTAL-FACE. In such regions, the supersaturation is expected
to be substantially lower than the average value for the entire width of the updraught,
because values of the vertical air velocity are low and also due to dilution with dry
environmental air. Hence, an ‘effective supersaturation’ for predicting secondary droplet
nucleation was assumed to be a prescribed fraction, 0.1, of the local value of the
predicted average supersaturation at a given level, at altitudes above where the average
fraction of cloud-base air is 50% (4 km AMSL). This fraction was selected so as to
match the predicted droplet concentration with that observed. For inputs to the droplet
nucleation scheme, ammonium sulphate was assumed for the chemical composition of
the aerosol (see subsection 3(a)).

(c) Comparison of available aircraft observations with control
The simulations were run for 75 minutes, during which time the model cloud top

was lifted by a sequence of thermals from 5 km AMSL to the maximum cloud-top
altitude of 14 km AMSL. The predicted vertical profiles of certain microphysical prop-
erties of the storm updraught have been averaged over the entire glaciated period of
the simulation at each level, and are compared here with observed profiles (see sub-
section 3(b)). Figures 1 and 2 demonstrate that cloud-water properties were adequately
predicted, given the spread of the observed values. (Here, as elsewhere in the present
paper, ‘concentration’ refers to the number of particles per unit volume of air, not the
mass of particles.) All the activated droplets disappear either by homogeneous freezing
or by evaporation near the −36 ◦C level. As was found by Heymsfield and Sabin (1989),
the homogeneous freezing of droplets occurs over a very narrow temperature range of
about 1 degC. The predicted and observed profiles of cloud-droplet concentration tend to
decrease with height throughout the entire depth of the cloud, largely due to intensifica-
tion of accretional losses from riming and accretion onto rain during ascent. Secondary
droplet nucleation makes an increasing contribution to the droplet concentration during
ascent (see subsection 4(b)). Figure 3 shows observed and modelled total condensed-
water content, and Fig. 4 shows particle concentrations from the model and filtered
2-DC aircraft observations.

In all cases, the simulated quantity is within one standard deviation of the observed
mean value and is well within the observed range of raw data values. Given our inexact
knowledge of the age of the cumulus turrets sampled by the Citation, and the sparseness
and imperfect collocation of various observations, we believe the agreement is adequate.

The predicted liquid fraction (the fraction by mass of the total mixing ratio of cloud-
water, rain and ice, that is liquid) in the updraught decreases monotonically with height
from 100% at the freezing level to about 10% at 11 km AMSL just below the anvil base.
It approaches zero rapidly just above 11 km AMSL, above which all remaining liquid
freezes. This is consistent with aircraft observations aloft. Only about 10–15% of all
particles >0.1 mm are observed to be spherical in our inspection of the 2-DC aircraft
observations, for the traverse at −35 ◦C (11.3 km AMSL in the model) by the Citation
at 1933 UTC. Similarly, the model predicts that only about 10% of particles >0.1 mm
are (round) liquid raindrops at this level, while the remaining 90% of particles >0.1 mm
are predicted to be ice particles that are not round, such as frozen drops (axial ratio, AR,
predicted to be 0.6) and H-M splinters (AR predicted to be 0.4). The lack of sphericity
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Figure 1. Mean droplet concentrations in a deep cumulus updraught observed by the Forward Scattering
Spectrometer Probe and those predicted by the Explicit Microphysics Model. The horizontal bar centred on the

observed mean (‘o’) is two standard deviations wide.
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Figure 3. The measured condensed-water content observed in a deep cumulus updraught for all hydrometeors
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Figure 4. Filtered (>0.5mm) 2-DC (see text) particle concentrations observed in a deep cumulus updraught, and
those predicted by the Explicit Microphysics Model. The increase with height towards the anvil top in the model
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Figure 5. Vertical profile of supersaturation with respect to ice in a deep cumulus updraught in the Explicit
Microphysics Model.

of frozen drops at this altitude in the control simulation is due to their vapour growth,
as they are too small (0.1–0.2 mm) to rime efficiently. This validates the particle-growth
scheme in the EMM.

Finally, although the ice concentration is fairly uniform with height (about 20–
40 L−1), the average ice-water content reduces with height from 0.9 to 0.1 g m−3 over
the entire depth of the anvil. This is at least qualitatively consistent with aircraft obser-
vations of a decrease of ice-water content with decreasing temperature in tropical con-
vective anvil cirrus in the vicinity of Kwajelein in the west Pacific (Brown and Heyms-
field 2001). In the model nearly all ice mass below the anvil resides in graupel, and ice
particles are far less numerous than liquid droplets, despite contributing comparably to
condensed mass at most levels. Figure 5 illustrates the vertical profile of supersaturation
with respect to ice. Above the anvil base, the ice supersaturation is <10% mostly, which
is well below the threshold for homogeneous aerosol freezing. Figure 6 displays
the particle size distribution from the updraught at −50 ◦C (about 13 km AMSL).
Most anvil ice particles are in the size range 10–50 microns.

4. RESULTS: SENSITIVITY TO NUCLEATION PROCESSES

Results are presented here from a sequence of sensitivity studies dealing with the
key nucleation processes, in order to assess the impact of various nucleation processes
on the anvil.

The mixed-phase region extends from the freezing level at 5.9 km AMSL to the
anvil base at about 11.5 km AMSL (−36 ◦C). Cloud droplets that reach the anvil base
will freeze homogeneously there, or else simply evaporate. The anvil extends from about
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11.5 km AMSL to the assumed maximum cloud-top level of 14 km AMSL. The H-
M region is located at 6.5 to 7.4 km AMSL (−3 to −8 ◦C). This is where the H-M
process of ice multiplication is active. Unless otherwise stated, results are taken from
the updraught of the storm.

(a) No homogeneous freezing
A model run was performed with homogeneous freezing of droplets, rain and

aerosols prohibited (the case with no homogeneous freezing), so that droplets could
remain as supercooled water to arbitrarily low temperatures unless frozen via activation
of IN. This run was compared with the control.

Figure 7 shows that the total ice concentration at all levels in the anvil was about
three orders of magnitude lower in the no-homogeneous-freezing case than in the
control. The discontinuity in total ice concentration caused by the homogeneous freezing
of droplets at the anvil base in the control was completely eliminated; however, the ice
concentration in the mixed-phase region of the updraught remained almost unaltered.
The ice mixing ratio was reduced by about 1 g kg−1 at most levels in the anvil in the
no-homogeneous-freezing case relative to the control. The mixing ratio of supercooled
cloud water was increased from zero to values of about 0.5 g kg−1 in the anvil when
homogeneous freezing was excluded. The peak in ice crystal concentration near 7 km
AMSL is due to the H-M process being active in both simulations.

Anvil crystals are about an order of magnitude larger in the case with no homoge-
neous freezing relative to the control. Figure 8 demonstrates that they are about 200–
300 kg m−3 less dense. They are also slightly less columnar, with an AR that is closer to
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Figure 7. Comparison of the vertical profile of total ice concentration in a deep cumulus updraught predicted by
the Explicit Microphysics Model with no homogenous freezing, with that from the control run.

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

ρ
i

 a
lti

tu
de

 M
S

L 
(k

m
)

CONTROL
NO HOMOGENEOUS FREEZING

Figure 8. As Fig. 7 but for the bulk density of ice, ρi .



2032 V. T. J. PHILLIPS et al.

unity (lower by about 0.5). These changes arise because anvil crystals are formed by pri-
mary nucleation (i.e. condensation-freezing when IN activate) in the no-homogeneous-
freezing case, and are larger (by about 0.2 mm) having experienced much vapour growth
at water-saturated conditions in the mixed-phase region before entering the anvil.

In summary: about 99.9% of all anvil ice particles (representing about half of the
total ice mass in the anvil) are nucleated by homogeneous freezing in the updraught of
this particular model cloud, in the control simulation. This mostly involves the freezing
of supercooled cloud-droplets at the anvil base. Consequently, all other nucleation
processes can only significantly affect the anvil ice concentration insofar as they alter
the amount of supercooled condensate available for homogeneous freezing in this model
cloud.

(b) No in-cloud CCN activation
The next run was performed with both secondary droplet nucleation and homoge-

neous aerosol freezing prohibited (the primary-only case). Secondary droplet nucleation
involves the activation of CCN as cloud droplets anywhere in the ‘interior’ of the cloud
(i.e. at least 500 m above the cloud base), while homogeneous aerosol freezing refers
to freezing of haze particles that survive the entire updraught without activating. This
simulation therefore distinguishes the role of primary droplet nucleation (activation of
droplets near the cloud base), traditionally viewed as the main source of droplets.

Figures 9 and 10 demonstrate the impact that secondary droplet nucleation has
on the concentration of anvil ice crystals and supercooled droplets in the storm, by
comparing the model run having only primary nucleation with the control run. Most of
the droplets in the upper half of the mixed-phase region are clearly generated by
secondary droplet nucleation in the control. The droplet concentration is reduced by
about two orders of magnitude near the anvil base in the primary-only case relative to
the control.

Secondary droplet nucleation is only significant at levels more than about 3 km
above the cloud base, because the vertical velocity is lower and the droplet concentration
higher at levels nearer the cloud base. In the upper half of the mixed-phase region,
the rain mixing ratio in the primary-only case is reduced by <0.05 g kg−1, since
the warm-rain process is less active in the absence of copious cloud-water aloft. This
result is consistent with the findings of Pinsky and Khain (2002) that secondary droplet
nucleation accelerates coalescence. The cloud-water mixing ratio is also reduced by
about 0.5–1 g kg−1 at those levels.

In the anvil, the ice concentration is reduced by about two orders of magnitude at
most levels. The mean diameter of anvil crystals is increased by one order of magnitude
(from about 0.04 to about 0.4 mm) at most levels above 11 km AMSL in the primary-
only case relative to the control, due to fewer crystals competing for the available vapour.
Crystals are predicted to be less columnar and less dense in the anvil of the primary-
only case: their AR is about 0.5 lower and their bulk density is about 200–300 kg m−3

lower, relative to the control. The bulk density is lower because the particles grow as
bullets to larger sizes in the primary-only case near the anvil base, and the bulk density
of bullets decreases during growth. This extra bullet growth is due to the much larger
supersaturations reached aloft.

In summary: secondary droplet nucleation followed by homogeneous droplet freez-
ing is the source of ice particles in the anvil updraught of the control simulation. This is
partly because most primary droplets—nucleated near cloud base (0.8 km AMSL) in the
updraught—never reach the anvil base (11.3 km AMSL), being depleted by accretion
onto precipitation or detrainment in the underlying mixed-phase region. This depletion
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Figure 9. Comparison of the vertical profile of ice particle concentration in a deep cumulus updraught predicted
by the Explicit Microphysics Model with no in-cloud droplet activation, with that from the control run.
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Figure 10. As Fig. 9 but for the mean predicted droplet concentration.
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of primary droplets contributes to an increase of the average supersaturation with height,
especially above the freezing level, which causes in-cloud activation of CCN aloft. The
shape and bulk density of anvil crystals, which are explicitly predicted by the model, are
appreciably sensitive to the nature of droplet nucleation in the updraught.

(c) No warm-rain process
A model run was performed with all coalescence prohibited (the no-coalescence

case). This run was compared with the control.
Microphysical properties in, and below, the anvil were found to be radically altered

by the exclusion of coalescence. The rain mixing ratio was reduced to zero throughout
the updraught and at subzero levels in the SCR. The cloud-water content was increased
by <3 g kg−1 (by up to about 200%) in the updraught above 6 km AMSL and by
<0.5 g kg−1 (about 100%) in the SCR. In the updraught of the no-coalescence case, the
average cloud-droplet diameter was found to be about 5–10 μm higher at most levels
in the mixed-phase region relative to the control. This is because accretion of cloud
droplets by precipitation in the control occurs preferentially at larger droplet sizes, so
that coalescence tends to reduce the average droplet size in this particular model cloud.

Figures 11 and 12 depict the vertical profiles of the average number concentrations
of ice particles and droplets, respectively, in the model run with all coalescence prohib-
ited and in the control. In the anvil, the total ice concentration is at least half an order of
magnitude higher in the no-coalescence case, due to more droplets being available for
homogeneous freezing than in the control. The ice mixing ratio in the anvil is found to be
increased by about 200% relative to the control, because there is much less precipitation
and the condensed water is much less likely to fall out of the updraught. In the mixed-
phase region of the updraught, the ice mixing ratio is reduced to extremely low values
in the no-coalescence case; at these levels raindrop freezing dominates the ice mass
budget in the control simulation. The absence of frozen rain causes the H-M process
to be entirely inactive in the updraught of the no-coalescence case. H-M splinters in
the control simulation account for the peak in total ice concentration at 7 km AMSL.
Hence, below the anvil base the total ice concentration is reduced by at least one order
of magnitude at most levels in the no-coalescence case relative to the control.

Anvil crystals are found to be less dense and less columnar in the no-coalescence
case than in the control. Figures 13 and 14 show the explicitly predicted values of mean
AR and bulk density, respectively, in the model run with all coalescence prohibited and
the control. In the anvil, the average bulk density is reduced by about 100 kg m−3 while
the AR is reduced from almost 2 in the control to about 1.3 in the no-coalescence case.

Both explicitly predicted profiles of AR display columnar (AR > 1) growth in
columnar temperature regimes at 6.5–7.5 km AMSL and 9.5–11.5 km AMSL, and
similarly for planar growth (AR < 1) at 7.5–9.5 km AMSL, as expected for vapour
growth. The absence of frozen raindrops and H-M splinters in the no-coalescence case
causes the average value of AR to be governed by the shape of primary crystals. The
planar character of primary crystals is apparent from the low values of AR at 7.5–9.5 km
AMSL in the no-coalescence case.

In summary: raindrop freezing is found to account for most of the ice mass in
the mixed-phase region of the control updraught. In the anvil, however, homogeneously
frozen cloud water is more important. The mass of cloud water reaching the anvil is very
sensitive to whether the warm-rain process is present. Crystal properties are similarly
sensitive.



ANVIL GLACIATION SIMULATED WITH AN EMM: I 2035

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

5

6

7

8

9

10

11

12

13

14

15

ice particle concentration (m−3)

al
tit

ud
e 

M
S

L 
(k

m
)

CONTROL
NO COALESCENCE

Figure 11. Comparison of the vertical profile of total ice concentration in a deep cumulus updraught predicted
by the Explicit Microphysics Model having no coalescence, with that from the control run.
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Figure 12. As Fig. 11 but for the mean droplet concentration.
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Figure 13. As Fig. 11 but for the mean axial ratio of ice.
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Figure 14. As Fig. 11 but for the mean bulk density of ice.
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Figure 15. Comparison of the rain mixing ratio profile in a deep cumulus updraught predicted by the Explicit
Microphysics Model having no turbulence in the droplet/raindrop coalescence process, with that from the

control run.

(d) No turbulence enhancement factors for coalescence
A run was performed with the turbulence enhancement factors removed from the

droplet/raindrop coalescence process (the zero-turbulence case). Turbulent enhancement
of other accretional processes, such as riming, aggregation and collisional raindrop-
freezing, was not altered.

Figure 15 shows that the lower of the two peaks of rain mixing ratio, which
were found in the control, vanishes in the zero-turbulence case. No rain is found
below the 6 km AMSL level in the zero-turbulence case. The onset of coalescence in
updraught parcels is drastically delayed by the absence of turbulence effects. Figure 16
demonstrates that the average concentration of supercooled cloud-droplets is enhanced
by up to about 50% in the interior of the mixed-phase region in the zero-turbulence
case. This is due to lower rates of accretion of droplets by frozen and supercooled
raindrops. However, the sensitivity of the supercooled droplet concentration appears
to decrease with height towards the anvil base. The cloud-water content in the mixed-
phase region is increased by about 1–2 g kg−1. In the mixed-phase region, the peak in
total ice concentration associated with H-M splinter generation in the control at about
7 km AMSL vanishes in the zero-turbulence case since frozen raindrops are scarcer.

Figure 17 shows that in the anvil the average ice concentration is enhanced by about
20% at most levels in the zero-turbulence case relative to the control, because of higher
concentrations of supercooled droplets. Figure 18 illustrates that at most anvil levels
there is a reduction in the mean ice diameter by a few microns relative to the control,
due to increased competition between crystals for the available vapour. There are also
slight reductions in the anvil crystal AR and bulk density.
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Figure 16. As Fig. 15 but for the mean droplet concentration.
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Figure 17. As Fig. 15 but for the ice particle concentration.
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Figure 18. As Fig. 15 but for the mean ice diameter in the anvil.

Additionally, two further perturbation simulations were performed in which the
difference between the turbulent enhancement factor and unity for coalescence was dou-
bled and halved, respectively (not shown). Every doubling of this difference represents,
qualitatively, the effect of increasing the turbulent dissipation rate by a few hundred
percent. The altitude of warm-rain production was found to decrease steadily with in-
creasing turbulent enhancement, and also to intensify, as expected, between the zero-
turbulence case, these two extra runs and the control. This was found to reduce steadily
the supercooled-droplet concentration, reducing the anvil ice concentration. However,
the H-M process was only altered in a major fashion by the total removal of turbulent
enhancement from the control.

(e) No raindrop freezing
A run was performed with heterogeneous and collisional raindrop freezing removed

(the no-raindrop-freezing case). The freezing of cloud droplets and aerosols was the
same as in the control run.

In the anvil, the ice concentration was found to be about 30% higher in the no-
raindrop-freezing case relative to the control because of a similar fractional increase in
the average droplet concentration in the mixed-phase region. The average ice diameter
was lower by about 15%, while anvil crystals were less columnar (AR lower by
about 0.5) and less dense by about 50 kg m−3. The changes in crystal properties
are qualitatively similar to those found when the warm-rain process was excluded
(see subsection 4(c)). In the mixed-phase region, the number concentration of graupel
particles is reduced by about two orders of magnitude, reflecting the fact that in the
control run raindrop freezing, rather than the riming of primary crystals, is the main
source of graupel.
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Figure 19. Percentage changes in the interior of the cloudy updraught for the ten nucleation processes studied
here (see key): (a) of ice concentration in the anvil updraught, (b) of the mean diameter of ice particles in the anvil
updraught; and (c) of supercooled droplet concentration changes in the 1 km layer below the anvil. The fractional
changes in mean ice diameter for homogeneous freezing and in-cloud-droplet nucleation (not plotted) are about
600% and 900% respectively. HM refers to the Hallett and Mossop (1974) process of ice multiplication. See text

for further details.

In summary: the higher cross-sectional area of frozen raindrops in the control run
more effectively depletes droplets than in the no-raindrop-freezing case (see Johnson
1987). This means that the droplet concentration is higher in the raindrop-freezing case,
with concomitant changes in the concentration and properties of anvil crystals.

( f ) Intercomparison of all nucleation processes
The histograms in Fig. 19 show the average percentage changes in concentration

and mean diameter of anvil ice particles, and in supercooled-droplet concentration
below the anvil base, when ten particular processes (given in the key) are individually
excluded from the model relative to the control simulation. Naturally, the greatest
direct impact on the anvil ice concentration is from homogeneous freezing (test 1).
Indirect modifications of the anvil glaciation are caused by processes associated with
the nucleation of new ice particles in the mixed-phase region, such as collisional and
heterogeneous raindrop-freezing (test 8) and primary nucleation of crystals (test 7).
When such non-homogeneous nucleation processes are excluded, there is usually an
increase in the concentration of droplets reaching the anvil base. This is because frozen
precipitation particles are much more effective at accreting cloud water than are liquid
particles of the same mass (see Johnson 1987). However, by far the greatest indirect
impact on the anvil glaciation is from the warm-rain process (test 3). The warm-rain
process exerts a massive impact on the anvil ice concentration, because it accounts
for most of the mass of both liquid and frozen precipitation generated in the control
simulation. Hence, the warm-rain process causes the depletion of most of the cloud
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water in the mixed-phase region. For this reason, turbulent enhancement of coalescence
produces a modification of the anvil glaciation that is comparable to, or exceeds, the
indirect impacts from (non-homogeneous) ice nucleation processes in the mixed-phase
region.

In-cloud droplet nucleation (test 2) produces a major impact on the anvil ice
concentration. It is the source of about 99% of the number of supercooled droplets
reaching the anvil base in the control simulation. Since homogeneous freezing of such
droplets accounts for about 99.9% of the anvil crystals (see test 1), most of the anvil ice
crystals in the control simulation must be caused by secondary droplet nucleation (see
subsection 4(b)). When environmental aerosols above 5 km AMSL are neglected in a
further sensitivity test with the EMM, the average concentration of supercooled droplets
just below the anvil base in the updraught is reduced by about two-thirds, relative to the
control.

Processes making minor contributions to the anvil ice concentration include
aggregation, the H-M process, raindrop break-up and homogeneous aerosol freezing.
Aggregation appears to require much longer time-scales for the production of precip-
itation in a deep convective cumulus cloud compared to coalescence. Homogeneous
freezing of aerosols is not very significant when compared with that of cloud water,
because secondary droplet nucleation usually maintains a sufficiently high concentra-
tion of droplets and anvil ice particles for the saturation ratio almost never to reach the
threshold for homogeneous aerosol freezing. Some of these four nucleation processes,
of limited significance for the anvil, cause appreciable modifications of the cloud-water
field in the interior of the mixed-phase region. Finally, no appreciable sensitivity was
found when the temperature cut-off for heterogeneous droplet freezing was changed
from −30 to −60 ◦C.

Three extra sensitivity tests revealed that the anvil ice concentration was reduced by
about 5–10% by the following exclusions: the explicit prediction of the graupel density
(replaced by a constant value of 400 kg m−3); the surface temperature of ice (fixed to
the ambient air temperature); and the graupel drag coefficient (replaced by a formula
from Beard (1980)). Significant perturbations of the total ice mixing ratio > 10% and of
the droplet concentration were found in these extra runs. Clearly, explicit prediction of
crystal properties with a particle-growth scheme is important for accuracy.

(g) Intercomparison of turbulence effects
Two simulations were performed with turbulent enhancement of raindrop-freezing

and riming, respectively, prohibited. The anvil ice crystal concentration was quite similar
to the control value, being altered by <10%. This alteration is a reduction because,
although the supercooled-droplet concentration is increased by the order of 1–10% in the
1 km layer just below the anvil base, homogeneous aerosol freezing appears to be less
prolific in these perturbation simulations than in the control. For prohibition of turbulent
enhancement of the warm-rain process, corresponding alterations of the concentration
of such supercooled droplets and anvil ice particles are +30% and +20% respectively.
Clearly, the turbulent enhancement of the warm-rain process produces the dominant
impact on the anvil glaciation out of all the various coagulation mechanisms.

Curiously, the mixed-phase region is very sensitive to the turbulent enhancement of
riming. The H-M splinter concentration is reduced by an order of magnitude when the
turbulent enhancement of riming is excluded. This coincides with a similar sensitivity
of the mixing ratio of large graupel particles formed by raindrop freezing in the H-M
region. It appears that turbulent enhancement of riming promotes the generation of the
largest, millimetre-sized graupel particles that are able to fall against the updraught’s
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ascent into the H-M region. However, the anvil glaciation is not very sensitive to the
activity of the H-M process, because most of the anvil ice particles originate from
homogeneous freezing.

5. DISCUSSION AND CONCLUSIONS

We find that the vast majority of ice particles in the simulated Cb anvil originate
as homogeneously frozen cloud droplets. The hypothesis proposed by Rosenfeld and
Woodley (2000) of massive homogeneous droplet freezing at the anvil base is confirmed
by this result. In very broad terms, it is also consistent with the parcel model calculations
by Spice et al. (1999). This result is not globally applicable for absolutely all Cb,
since IN concentrations can sometimes be so numerous in particular dusty episodes
that most of the cloud-water freezes heterogeneously, or evaporates before it can
freeze homogeneously. For instance, in CRYSTAL-FACE the concentration of IN was
measured to be O(1) cm−3 during occasional Saharan dust events (DeMott et al. 2003),
which is an increase by a factor of at least 100 beyond the control values.

Nearly all freezing droplets were created by secondary, rather than primary droplet
nucleation in the model. This occurred because: (i) primary droplets from the cloud
base tend to be depleted by accretion onto precipitation before reaching the anvil base;
and (ii) droplet depletion aloft, in conjunction with the rapid increase with height of the
vertical velocity in the updraught, combine to boost substantially the supersaturation
above the freezing level. Pinsky and Khain (2002) found that the consequent nucleation
of secondary droplets accelerated raindrop formation by broadening the droplet size
distribution, a result duplicated here. When secondary droplet nucleation is excluded
from the EMM, the amount of rain in the mixed-phase region is suppressed.

About two-thirds of the secondary droplets reaching the anvil base are formed by
the activation of aerosols that have been entrained into the updraught from the lateral
environment above about 5 km AMSL in the model (see also Fridlind et al. 2004).
Consequently, very remote surface sources of atmospheric aerosol would be expected
to produce an appreciable impact on anvil and cirrus glaciation. Naturally, this result
depends critically on the specification of the rate of entrainment derived from the 3-D
cloud model utilized by Fridlind et al.

Among the remaining nucleation processes, the warm-rain process produces the
greatest indirect impact on the anvil ice concentration. The warm-rain process is central
to the regulation of the concentration of supercooled droplets in the mixed-phase region,
which determines the anvil ice concentration. This is because coalescence is the source
of almost all of the mass of precipitation, whether frozen or liquid. Precipitation acts
to deplete a large fraction of the cloud droplets by accretion before they can freeze
homogeneously. In the mixed-phase region, the total ice mixing ratio is dominated
by raindrop freezing. Without the warm-rain process, there is no H-M process in this
model cloud. The explicitly predicted ice particle properties, such as axial ratio and
bulk density, are also highly sensitive to the coalescence process in the mixed-phase
region. The activity of the H-M process in the control, despite the peak updraught speed
being >20 m s−1 aloft, is consistent with 3-D numerical simulations of deep convection
with bulk microphysics by Aleksic et al. (1989; see also Ovtchinnikov et al. 2000).

A striking result here is that turbulent enhancement of the collision efficiency for
coalescence must be accounted for if the anvil ice concentration is to be accurately pre-
dicted. Physically, this mechanism represents the modification of the relative velocities
of drops of different sizes due to their inertia (see Khain and Pinsky 1995). The velocity
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difference, due to turbulence, of a pair of small adjacent droplets may be comparable
with their difference in terminal fall velocities. In EMM simulations presented here, it
is shown that turbulent enhancement of coalescence has a greater indirect impact on the
anvil glaciation than most of the (non-homogeneous) ice nucleation processes that are
active in the mixed-phase region for this particular model cloud. Our simulations corrob-
orate the result of Pinsky and Khain (2002), that the rain production rate is quite sensitive
to turbulent effects. Their result is extended in this paper to cover the sensitivity of the
anvil glaciation to turbulent effects. (Although giant and ultra-giant aerosol particles are
not represented in the EMM here, Feingold et al. (1999) found that in stratocumulus
clouds such giant aerosol particles tend to modify rain production appreciably only in
clouds near their threshold of rain production—Cb are very far from such a threshold.)

Furthermore, it is shown that warm-rain production decreases in altitude and
intensifies steadily with an increasing degree of turbulent enhancement of the warm-
rain process. This steadily reduces the supercooled droplet concentration, reducing the
anvil ice concentration. It can also radically alter the H-M process. It is the turbulent
enhancement of the warm-rain process, rather than that of riming or raindrop freezing,
that affects the anvil the most.

The present paper shows that aggregation and homogeneous aerosol freezing are
not particularly important for glaciation in the updraught region of the Cb anvil in this
particular model cloud, when compared with coalescence and homogeneous freezing of
cloud water. Reisin et al. (1996) also found that aggregation is not important in deep
convective clouds, partly because of low values of the sticking efficiency. The lack
of homogeneous aerosol freezing in the EMM control is consistent with estimates by
Knollenberg et al. (1993); our hydrometeor concentrations were above the low values
of a few per cubic centimetre, or less than they found necessary near the anvil base
for homogeneous aerosol freezing to occur in the updraught. This estimate may also be
reached by scaling the analytical formula for the equilibrium supersaturation of a mono-
disperse population of spherical ice particles growing only by vapour deposition. That
such low values are only very rarely reached in the EMM control simulation is partly
because of the activity of secondary-droplet nucleation below the anvil base, and partly
due to the continental nature of the environmental CN spectrum applied here.

Generally, homogeneous aerosol freezing is obviously shut down by updraught
speeds being too weak (e.g. in cirrus; see Heymsfield and Sabin (1989)) because
ascent is needed to force a positive supersaturation with respect to ice. But the EMM
simulations here show that homogeneous aerosol freezing can also be shut down if the
updraught speed is too high, due to droplet concentrations being too high below the
anvil base. Another reason why homogeneous aerosol freezing is rare in this particular
model Cb updraught, is that whenever the saturation ratio exceeds the critical threshold
for homogeneous aerosol freezing, the largest few aerosols freeze first to form crystals.
These crystals then deplete the vapour before more aerosols can freeze, reducing the
saturation ratio (see Jensen et al. 1998). However, in the wider context it seems plausible
that once the cirrus has become detached from the convective core, the slow decline
in crystal concentration could conceivably allow episodes of homogeneous aerosol
freezing to occur over much longer time-scales than those simulated here.

Secondary droplet nucleation in the Cb updraught would be expected to quench
some of the sensitivity of the anvil glaciation, which may explain why several pro-
cesses of nucleation are found to display only a weak sensitivity here. This is because
any reduction in the supercooled droplet concentration will also tend to augment the
equilibrium supersaturation in updraught parcels, causing extra nucleation of secondary
droplets.
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Of course, the present results apply only to the particular cloud simulated in this
paper, which corresponds to the moderately continental CCN concentration observed in
the environment on 18 July 2002 of CRYSTAL-FACE. Updraughts with a weaker rate of
increase with height of the vertical air velocity than that prescribed for this case, would
force a lower supersaturation below the anvil. This would probably reduce the extent of
secondary droplet nucleation. Moreover, the present analysis assumes processes of ice
nucleation are known and properly quantified. In fact, there is still controversy about
what the full set of mechanisms are for secondary ice formation, especially with ice
break-up.

In summary: this paper demonstrates a significant sensitivity of the ice micro-
physics with respect to the inclusion of turbulence enhancement factors in coalescence.
There is clearly a need for continued laboratory studies and theoretical research to quan-
tify such factors. Furthermore, certain nucleation processes, such as raindrop freezing
and the warm-rain process, need to be accurately represented if the anvil ice properties
of deep convection are to be correctly predicted in cloud models.
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